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Introduction 
Amphibians are declining worldwide and currently are considered one of the most threatened 

vertebrate classes in the world (Stuart et al. 2004, Hof et al. 2011). Forty-one percent of all amphibian 

species are threatened with extinction or are already extinct (Pimm et al. 2014). Despite this evidence, 

efforts to monitor, study, and conserve amphibian biodiversity are notoriously underfunded relative to 

other vertebrates (Gratwicke et al. 2012).  

Known threats to Rocky Mountain amphibians include diseases (e.g. chytrid fungus), pesticides, 

herbicides, pollutants, introduced predators, UV radiation, and habitat loss and fragmentation. Altered 

water availability, water temperatures, and hydroperiods due to recent pine beetle outbreaks and 

climate change could further impact amphibian biodiversity. Wetland desiccation and shortened 

hydroperiods resulting from reduced snowpack and increased evapotranspiration due to climate change 

(MacCracken et al. 2003, Brooks 2004, Barnett et al. 2005,  Mote 2005, McMenamin et al. 2008, Brooks 

2009) pose numerous potential direct and indirect effects on amphibians in the Rocky Mountain region 

(for reviews see Blaustine et al. 2010, Li et al. 2013). More concerning is that these threats may work 

synergistically against amphibian populations (Salice 2012). Effects of pine beetle outbreaks on 

hydrology are complex and poorly understood (Pugh and Gordon 2013), but are known to alter snow 

accumulation, snowmelt patterns, and water quality (Edburg et al. 2012, Pugh and Small 2012). 

Despite global declines and numerous complex threats to amphibians, resource managers have 

struggled to find affordable yet effective long-term monitoring methods. In 2012, the Wyoming Natural 

Diversity Database (WYNDD), Wyoming Game and Fish Department (WGFD), U.S. Forest Service (USFS), 

and Colorado Natural Heritage Program (CNHP) initiated an occupancy-based amphibian monitoring 

study design developed by the USGS Amphibian Research and Monitoring Initiative (ARMI) (Corn et al. 

2005). This monitoring approach has been used successfully in several national parks. An occupancy-

based approach to monitoring is less data intensive than traditional abundance-based approaches and, 

particularly for difficult to detect species like amphibians, can result in more robust estimates. Thus, an 

occupancy-based approach to monitoring amphibians can provide a more economical means of 

obtaining robust estimates of occupancy trends over large landscapes and multiple years. 

Based on pilot study results, we designed and began implementation of standardized amphibian 

monitoring at 33 locations in the Medicine Bow and Routt National Forests (MBRNF) in southern 

Wyoming and northern Colorado. The monitoring effort, now known as the Rocky Mountain Amphibian 

Project (RMAP; www.toadtrackers.org), was expanded to 36 locations in the Bridger-Teton National 

Forest (BTNF) in western Wyoming in 2014. Support from the University of Wyoming Biodiversity 

Institute (BI) in 2013 helped to ensure the sustainability of this long-term monitoring effort by involving 

trained citizen scientists to augment surveys conducted by agency biologists and biological technicians. 

RMAP now has the tools necessary to train citizen scientists and agency biologists to conduct 

standardized surveys, coordinate survey efforts across all collaborators, and supply surveyors with basic 

supplies needed to complete surveys. By spreading survey effort across all partners, RMAP has collected 

annual monitoring data for amphibians on the MBRNF since 2012. 

Although preliminary estimates of amphibian occupancy have been provided annually for the 

Medicine Bow National Forest (MB) and Routt National Forest (RT) separately, analyses across the full 

http://www.toadtrackers.org/


MBRNF study area have been precluded by data storage issues. Initially, the MB (Wyoming) and the RT 

(Colorado) each stored data in separate database for ease of data entry and management. With 

additional funding from the BI, a centralized online-accessible database and data entry system was 

completed by the UW Wyoming Geographic Information Science Center (WYGISC) in the fall of 2015. 

Following completion of the centralized database, existing data from the different RMAP databases 

needed to be vetted, formatted, and migrated into the new central database before analyses of 

population trends across the entire project area could be conducted. Thus, the purpose of this project 

was to migrate all MBRNF data into the new database and assess amphibian occupancy across the full 

MBRNF study area for the first time. 

Goals and Objectives 

The goal of this project was to consolidate RMAP data from both the MB and RT in to the new 

centralized database to facilitate amphibian occupancy trend analyses across the full MBRNF study area.  

Specific Objectives 

1. Vet, format, and migrate existing RMAP data from surveys on the RT into the online-accessible 

geodatabase developed by UW-WYNDD and WYGISC. This included migrating catchment data 

and associated site shapefiles collected and developed by the RT and CNHP. 

2. Use occupancy modeling to estimate the probability of detecting a species during a survey and 

occupancy trends of amphibian species from 2012-2014 on the MBRNF. 

3. Provide the MBRNF with the data analysis, occupancy trends on key species, and a report 

concerning amphibians on the MBRNF. 

Methods 

Study Area 

 RMAP currently encompasses the Medicine Bow and Routt National Forests in southern Wyoming 

and northern Colorado and the Bridger-Teton National Forest in western Wyoming. Lodgepole pines 

(Pinus contorta) in the MBRNF have been heavily impacted by mountain pine beetle outbreaks. Survey 

catchments in the MBRNF occur in amphibian habitat within lodgepole pine, mixed conifer, and 

subalpine forest types. Amphibian habitat in the study area includes wet meadows, bogs, beaver ponds, 

springs, and backwaters or slow moving areas along mountain streams. Five amphibian species are 

known to occur on the MBRNF and include the Western (Boreal) Toad (Anaxyrus boreas), Boreal Chorus 

Frog (Pseudacris maculata), Northern Leopard Frog (Lithobates pipiens), Wood Frog (Lithobates 

sylvaticus), and Tiger Salamander (Ambystoma mavortium). 

Study Design 
Standardized long-term amphibian monitoring is critical to understanding and obtaining defensible 

population trends. The RMAP study design incorporates USGS ARMI guidelines for their mid-level 

occupancy-based modeling approach (Corn et al. 2005) and methods closely resemble those used by 



Yellowstone and Grand Teton National Parks (Bennets et al. 2013). Thus, our data are compatible with 

other monitoring datasets for montane amphibians in the Rocky Mountain region.  

The primary sampling unit consists of all aquatic sites within a designated survey area (hereafter 

catchment). A site is defined as a unique aquatic feature (wetland, pond, wet meadow, bog, stream 

reach, etc.) within a catchment. Surveying multiple sites within a catchment not only increases the 

likelihood of detecting a species if it is present in the catchment, but also accommodates annual 

variability in the persistence of wetlands and/or the use of a specific wetland by amphibians.  

We used occupancy modeling results from our pilot study and related projects (Estes-Zumpf et al. 

2012, Estes-Zumpf et al. 2014) to inform the number and size of survey catchments to monitor within 

the MBRNF. We used stratified sampling to identify survey catchments in potential amphibian habitat 

across the study area. To select catchments more likely to contain amphibian breeding habitat, we 

restricted selection to areas containing a high proportion of wetland edge habitat. The selection process 

was weighted based on ease of access from roads and trails and was stratified across 3 elevation classes. 

Lastly, we stratified sampling by USFS ranger district on each forest unit. We then digitized at least 4 

survey sites encompassing all presumed amphibian habitat within each catchment. We used ArcGIS 

(ESRI Inc., Redlands, CA) to conduct all habitat analyses.  

Because 2012 was the first year of standardized surveys at catchments identified through the 

catchment selection process, survey locations had to be field-validated to assess presence of amphibian 

habitat. Following 2012 surveys, catchments were reevaluated and the number of sites within each 

catchment was adjusted to ensure all sites in a given catchment could be visited within one work day. In 

some cases, catchments were deemed to not contain adequate potential amphibian habitat (no slow 

moving or standing water present) and were dropped from the monitoring program and replaced with a 

backup catchment identified during the initial catchement selection process. Occupancy modeling 

analyses were conducted only on data from the final suite of catchments and sites. Thus, data for 2012 

were missing from catchments substituted for catchments dropped after 2012. As such, results from 

2012 should be viewed with caution because that year does not accurately represent the full suite of 

catchments and sites surveyed from 2013 onward. 

Amphibian surveys followed standardized protocols designed to accommodate estimation of 

species detection probabilities. Surveys were conducted during the breeding season (mid-May to early 

August depending on elevation and annual weather conditions) when species were most detectable. 

Surveyors were provided survey packets consisting of 1) a catchment overview sheet (with basic 

information, directions, and maps) and 2) site-specific datasheets (1 for each site in the catchment) 

prepopulated with site and catchment name, relevant navigation and recommended photo points and a 

site map on the back. Visual encounter surveys were conducted either independently by each of 2 

observers (dual-observer method) or collectively by a group of surveyors (team method). We recorded 

evidence of breeding as well as the number of any adults and juveniles of each species at each site. 

Detailed explanations of the study design, site selection, and survey protocols can be found at 

www.toadtrackers.org and in associated project reports (Estes-Zumpf et al. 2012, Estes-Zumpf et al. 

2014). 

A subset of amphibians detected each year were swabbed for chytrid fungus (Batrachochytrium 

dendrobatidis; Bd) following procedures outlined by Livo (2004). Bd samples were sent to a lab for PCR 

http://www.toadtrackers.org/


testing. All survey and sampling gear were decontaminated between drainages and between isolated 

sites within drainages to prevent the spread of Bd among sample locations. 

 

Statistical Methods 

Multi-scale occupancy modeling 

The primary objective of analyses was to estimate occupancy probability for each year (2012, 2013 

and 2014), while controlling for detection probability (ρ), for each amphibian species. Single-season, 

multi-scale occupancy models were used to estimate the probability of detection and occupancy for 

each amphibian species separately (MacKenzie et al. 2006, Nichols et al. 2008, Pavlacky et al. 2012). 

Multi-scale occupancy models enabled the estimation of occupancy at two spatial scales within a single 

modeling framework: catchment occupancy (Ψ; broad scale) and occupancy of sites within catchments 

(Θ; fine scale). Broad scale occupancy (Ψ) is simply the probability that a catchment is occupied; 

however, fine scale occupancy (Θ) is the probability of a site being occupied given that the catchment is 

occupied. In other words, Θ is conditional on the catchment 1st being occupied (Nichols et al. 2008, 

Pavlacky et al. 2012). Additionally, the multi-scale model accounts for lack of independence among sites 

within catchments, resulting in reliable error estimates (Nichols et al. 2008, Pavlacky et al. 2012). Model 

selection was conducted with Akaike’s Information Criterion corrected for small sample sizes (AICc), and 

∆AICc and AICc weight were used to compare the relative support for each model (Burnham and 

Anderson 2002). To minimize the effects of multicollinearity between predictors within a model, we 

used a cut-off of two for the variance inflation factor. We used a multistage modeling approach (Doherty 

et al. 2012), which enabled the comparison of a suite of predictor variables (Table 1): 

 

Stage1: occupancy parameters (catchment and site) were held as complex (global) models while all 

possible additive combinations of detection predictors, excluding temp2 and veg, competed (Table 

1). temp2 and veg were included as univariate predictors because otherwise the size of models and 

number of predictor combinations would have been intractable. If temp2 and/or veg were 

significant, the top model was assessed post-hoc with and without the addition of temp2 and/or 

veg, and the higher ranked model was retained. 

Stage 2: detection was held as the top model from Stage 1 while different occupancy (catchment 

and site) models competed (Table 1).  

Stage 3: the top Stage 2 model that included a year term for both catchment and site occupancy 

was used to estimate occupancy by year for both spatial scales. Thus, occupancy was estimated by 

year regardless of whether the top Stage 2 model contained a year term for occupancy parameters. 

 

For all species, models that did not converge were removed at each stage; thus, although the same 

suite of predictors was used for each species, not all predictors converged for all species, resulting in 

different model sets. When comparing nested models with AIC it is important to account for highly 

ranked models with uninformative predictors which are “carried” by informative predictors (Burnham 

and Anderson 2002, Arnold 2010). Models with uninformative predictors take AIC model weight that 

would otherwise go towards higher ranked models, and thus skew model set interpretation. We 



considered models to be uninformative if a nested model with one less predictor differed in deviance by 

≤1 and was within 0 to ~3.5 ∆AICc, suggesting that the larger model did not improve model fit relative to 

the smaller, nested model (see Appendix 1 for an example; Burnham and Anderson 2002, Arnold 2010). 

Models with uninformative predictors were presented in model sets to facilitate interpretation; 

however, these models were excluded when calculating AICc weights. The effect of a predictor was 

considered statistically significant if the 95% confidence interval (CI) for the beta estimate did not 

overlap zero. 

  

Results 

Data vetting, formatting, and migration 

 We worked with the RT and CNHP to vet and format data from 2012-2014 previously housed in 

a database at CNHP. The size and complexity of some catchments had prohibited survey of all sites 

during each visit. Thus, we worked together to reduce the number of sites within a catchment when 

necessary so that future surveyors could feasibly survey all sites each visit. To maximize use of data 

collected, we first dropped from the monitoring program sites within a catchment that were rarely if 

ever surveyed since the start of the program. Data from sites that were dropped were not used in 

occupancy analyses. We also worked with the RT and CNHP to upload catchment and site GIS shapefiles 

into the new central geodatabase. All survey and species data collected are now linked to the relevant 

site and catchment feature class polygons. This will aid greatly in reducing data entry error and querying 

data from specific survey locations. The final suite of established monitoring locations on the MBRNF 

used for occupancy analyses consisted of 164 wetland sites (MB = 90; RT = 74) across 33 catchments 

(MB = 18; RT = 15) (Figure 1). Most sites in most catchments were surveyed annually; however, forest 

fires, weather, and other stochastic events occasional prevented a catchment or a site within a 

catchment from being surveyed in some years.  

 

Boreal chorus frog 

The top two detection probability models for Boreal Chorus Frog from Stage 1 comprised 61% of 

model weights and both included a significant negative quadratic effect of air temperature (beta = -

0.006, 95% CI = -0.011, -0.001; Figure 3; Appendix 2 Table 1). Detection probability also increased with 

site area in the top detection model (Figure 3; beta = 0.038, 95% CI = 0.001, 0.075).  

Probability of occupancy for both catchments and sites was constant and did not vary across years 

at either spatial scale; however, site occupancy (Θ) was more variable between years than catchment 

occupancy (Ψ) (Figure 2a, Appendix 2 Table 2). Boreal Chorus Frog was the most common species in the 

MBRNF, with a probability of catchment occupancy of 0.706 (95% CI = 0.599, 0.793) and a probability of 

site occupancy of 0.626 (95% CI = 0.561, 0.687; Appendix 2 Table 2).  

 

Northern leopard frog 

Northern Leopard Frog detection increased as air temperature increased and as site area 

decreased. The top detection probability model from Stage 1 had 73% of model weights and included a 



significant negative effect of site area (beta = -0.952, 95% CI = -1.385, -0.519; Appendix 3 Table 1) and a 

significant positive effect of air temperature (beta = 0.142, 95% CI = 0.008, 0.275) on detection 

probability. Detection probability also varied by year (Figure 4). Probability of detecting Northern 

Leopard Frogs was higher in 2012 and 2014 than in 2013.  

Northern Leopard Frog occupancy did not vary significantly across years at the catchment level 

(Figure 2b). The top two NLF occupancy models were closely ranked and comprised 76% of model 

weights (Appendix 3 Table 2). In both top models, catchment occupancy for Northern Leopard Frogs 

decreased with increasing elevation (Ψ beta = -0.004, 95% CI = -0.007, -0.001; Figure 4). Probability of 

site occupancy was constant in the top model (0.815, 95% CI = 0.663, 0.908), but there was a non-

significant year effect in the second- ranked model (Appendix 3 table 2; Figure 2b).  

 

Wood frog 

The probability of detecting Wood Frogs was higher later in the breeding season and increased with 

air temperature and site area. The top detection probability model from Stage 1 had 55% of model 

weights (Appendix 4 Table 1) and included significant positive effects of Julian date (beta = 0.056, 95% CI 

= 0.025, 0.086), air temperature (beta = 0.087, 95% CI = 0.014, 0.159), and site area (beta = 0.099, 95% 

CI = 0.032, 0.166) on detection (Figure 5). Probably of detection was lower for citizen scientists than 

biologists (beta = -1.236, 95% CI = -2.140, -0.332); however, the effect of surveyor type needs to be 

interpreted with caution since it is likely confounded with other factors such as year and sample size 

because citizen scientists only began conducting surveys in 2014. Detection probability in 2013 was 

significantly higher than 2014, but did not vary significantly for any other year comparisons (Figure 5).  

Wood Frog occupancy did not vary significantly by year at either the catchment or site scale (Figure 

2c). The top two occupancy models were closely ranked and comprised 63% of model weights (Appendix 

4 Table 2). In the top model, catchment and site occupancy were both constant; catchment occupancy 

was 0.28 (95% CI = 0.19, 0.38) and site occupancy was 0.64 (95 % CI = 0.52, 0.74). In the second ranked 

model, site area had a positive but non-significant effect on site occupancy (beta = 0.073, 95% CI = -

0.050, 0.197). 

 

Boreal toad 

The top two detection models for Boreal Toads from Stage 1 were closely ranked and comprised 

53% of model weights (Appendix 5 Table 1). Detection was constant in the top model (detection 

probability = 0.603, 95% CI = 0.483, 0.712), whereas, air temperature had a non-significant positive 

effect on detection in the 2nd ranked model (beta = 0.084, 95% CI = -0.024, 0.192). 

Boreal Toad occupancy was low across the MBRNF. The top two occupancy models from Stage 2 

were similarly ranked and comprised 73% of model weights (Appendix 5 Table 2). In the top model, 

catchment occupancy was constant (occupancy probability = 0.111, 95% CI = 0.055, 0.211) and site 

occupancy varied with year (Figure 2d). In the second ranked model, site occupancy still varied with 

year, however, elevation had a non-significant positive effect on catchment occupancy (beta = 0.002, 

95% CI = -0.001, 0.005). Catchment occupancy did not vary significantly by year (Figure 2d).  

 



Tiger salamander 

Due to infrequent tiger salamander detections during surveys, detection probability models in 

Stage 1 only converged when occupancy parameters (Ψ and Θ) were held as constant (intercept only) 

models. The top detection model from Stage 1 had 55% of model weights (Appendix 6 Table 1) and 

detection probability increased significantly with air temperature (beta = 0.101, 95 % CI = 0.010, 0.192) 

and varied by year (Figure 6). Detection in 2012 was significantly higher than 2014, but did not vary 

significantly for any other year comparisons (Figure 6). 

Tiger Salamander occupancy did not vary significantly by year at either the catchment or site scale 

(Figure 2e). The top two occupancy models from Stage 2 comprised 56% of model weights (Appendix 6 

Table 2). Catchment and site occupancy were both constant in the top model: catchment occupancy = 

0.389 (95% CI = 0.198, 0.622) and site occupancy = 0.242 (95% CI = 0.121, 0.425). Catchment occupancy 

was also constant in the second ranked model, however, there was a non-significant negative effect of 

site area on site occupancy (beta = -0.068, 95% CI = -0.207, 0.071). No model converged that included a 

year effect for both catchment and site occupancy; however, models did converge that allowed 

catchment but not site occupancy to vary by year and, alternatively, site but not catchment occupancy 

to vary by year (Appendix 6 Table 2; Figure 2e).  

 

Chytrid fungus(Bd) 

Since the onset of this monitoring program, Bd has been detected at 12 of 18 catchments 

sampled (Table 2) and in 4 of 5 amphibian species (Table 3) on the MB. Bd has not yet been detected in 

Tiger Salamanders sampled during RMAP surveys on the MB, however, this could be due to the low 

number of salamanders sampled since 2012 (Table 3). The MB4_Fall Creek catchment, a known Boreal 

Toad breeding site, continues to test negative Bd as of 2016 (Table 2) and is the only known Bd-free 

Boreal Toad breeding site on the MB. Although Bd has been sampled across RT catchments since 2012, 

those results are not included in this report.  

 

Discussion 

 This project was essential to consolidating all existing data collected on the MBRNF into the new 

online-accessible RMAP database and enabling amphibian occupancy analyses to be conducted across 

the full MBRNF study area for the first time. Overall, we found no evidence of a change in catchment 

occupancy for the first three years of amphibian monitoring on the MBRNF (2012-2014) for any of the 

five species in the study area. Although occupancy estimates appear to vary by year for Boreal Toads 

and Tiger Salamanders (Figure 1), results for these species should be viewed with caution due to the low 

number of detections and/or difficulty in detecting these species when present, resulting in extremely 

large confidence intervals around estimates. Data collected from additional years of standardized 

amphibian monitoring should help to improve confidence around estimates of detection and occupancy 

for these and other species.  

In general, Boreal Chorus Frogs and Tiger Salamanders were the most common species detected 

across the MBRNF, occupying 71% and 39% of catchments, respectively in any given year from 2012-



2014. Because the probability of detecting Tiger Salamanders when present was low relative to other 

species, occupancy modeling results suggest that the species is more common across the MBRNF than 

estimated by naïve occupancy rates (naïve Ψ = 27%), which fail to correct for difficulty in detecting this 

species using traditional VES survey techniques. Boreal Toads were the least common species detected, 

followed closely by Northern Leopard Frogs, which were primarily found at lower elevation sites on the 

MBRNF.  

Because the primary focus of this analysis was to look at trends in occupancy over time, we did not 

include a full suite of habitat variables that could influence amphibian occupancy, such as presence of 

fish and type of water body or wetland surveyed. However, the influence of habitat characteristics on 

presence of a species can be assessed in future analyses with the data now available. Furthermore, 

University of Wyoming graduate student Andy Gygli has been collecting data at RMAP catchments for 

two years and will be assessing habitat characteristics that influence breeding at a site by different 

species. Results from this analysis will be available as part of his Master’s thesis. 

Air temperature was found to influence the probability of detecting Boreal Chorus Frogs, Wood 

Frogs, and Tiger Salamanders. This is likely because amphibians are ectotherms and increase daily 

activity as the surrounding habitat warms. Although the probability of detecting Wood Frogs and Tiger 

Salamanders continued to increase as temperature increased, Boreal Chorus Frogs increased in 

detection until about 18⁰C (~64⁰F), after which detection decreased. This decrease in detection at higher 

air temperatures may result from Boreal Chorus Frogs seeking shade or other thermal refuges to reduce 

water loss. Detection probability also varied by year for several species, though the reason for this is not 

apparent. Annual variation in detection might be due to differences in vegetative cover across years, or 

because average survey conditions (such as temperature or timing of surveys as measured by Julian 

Date) differed across years. Because we did not test for an interaction between year and either 

temperature or Julian date in this analysis, we are unable to assess how these might have changed 

across years. 

Although we modeled the effect of surveyor type (citizen scientist vs. biologist/biological 

technician) on detection probability, results should not be interpreted as a comparison between citizen 

scientists and biologists. Surveyor effect was included to improve estimates of detection probability by 

correcting for bias, if present, due to type of surveyor. The number of catchments surveyed by biologists 

greatly exceeded that of citizen scientists because citizen scientists were not involved in RMAP surveys 

until 2014. The unequal sample sizes prevent a rigorous comparison of performance between citizen 

scientists and biologist. However, we are in the process of assessing the performance of these two 

surveyor groups over two years (2014 & 2015) using data from 125 sites visited by both groups in the 

same season.  

The primary goal of this work was to consolidate RMAP data across the MBRNF and assess 

amphibian occupancy for the whole MBRNF study area for the first 3 years of standardized monitoring 

surveys (2012-2014). WGFD is currently in the process of analyzing the full 5 years of RMAP data 

collected across the MBRNF (2012-2016) and 3 years of data collected on the BTNF (2014-2016). Results 

of this larger analysis will allow us to evaluate the ability of RMAP to effectively track amphibian 

occupancy as well as breeding over time. Assessing evidence of breeding over time is an important 

aspect of amphibian monitoring because presence of individuals at a site does not necessarily indicate 



successful breeding. For longer-lived species such as Boreal Toads, a site can continue to be “occupied” 

by a few older adults even though no recruitment is occurring.  

RMAP represents one of the first attempts to conduct standardized amphibian monitoring across a 

regional spatial scale and multiple jurisdictional boundaries. The North American Amphibian Monitoring 

Program (NAAMP;  https://www.pwrc.usgs.gov/NAAMP/)  has done this in the eastern United States 

using road-based nocturnal calling surveys. Although NAAMP has been successful and may be suitable 

for lower elevations in Wyoming, road-based amphibian calling surveys are not a feasible alternative for 

monitoring montane amphibians in the Rocky Mountain region. Thus, RMAP contributes critical 

information on trends in occupancy of montane amphibians outside of national parks in the Rocky 

Mountains.   

With support from the MBRNF and BI, RMAP now has the resources to train people from diverse 

backgrounds to conduct standardized amphibian surveys, coordinate survey efforts across multiple 

mountain ranges in two states, and compile data into a central database accessible by all collaborators.  

With continued monitoring through RMAP, resource managers will be able to regularly assess the status 

of amphibian in their region, use available data to conduct more in-depth analyses to investigate habitat 

relationships and potential impacts from stressors such as wetland desiccation and disease, and 

demonstrate a concerted effort to managing amphibians in light of demonstrated global and local 

declines.   

The value of long-term monitoring data for amphibians cannot be overemphasized. Natural 

variation in amphibian abundance is typical, especially in arid regions where water availability is driven 

by annual weather conditions.  This variation makes assessing actual trends in amphibian populations 

difficult unless assessed over longer time periods.  While the need for long-term monitoring is typically 

recognized and supported for other taxa such as birds and big game, establishing and maintaining 

monitoring for amphibians remains a challenge. With the resources now available to the Rocky 

Mountain region through RMAP, we hope that amphibian monitoring will not only continue, but also 

expand. 
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Table 1. Predictor variables used to model detection probability (p), catchment occupancy (Ψ) and site 

occupancy (Θ) for all amphibian species. Catchment scale predictors had one value per catchment, thus 

all sites within a catchment had the same predictor value. Site scale predictors had one value per site, 

thus each catchment had multiple values. Catchment and site predictors may or may not vary by year. 

Survey scale predictors were estimated separately for each survey for each site, thus each site had 

multiple predictor values. “Y” and “N” under Detection, Catchment and Site indicate whether the 

predictor was used to model that parameter (Y) or not (N).  

 

Predictor Scale Detection Catchment Site  Description 

constant NA Y Y Y  Constant (intercept only) 

year Catchment Y Y Y  Survey year (2012, 2013 or 2014) 

elev Catchment N Y N  Average catchment elevation (m) 

area Site Y N Y  Area (ha) of each site in catchment 

jdate Survey Y N N  Julian date (Day-of-year) 

temp Survey Y N N  Air temperature (⁰C) 

temp2 Survey Y N N  Quadratic effect of air temperature (⁰C) 

veg Survey Y N N  Percent shoreline with emergent vegetation1 

surveyor Survey Y N N  
Survey was conducted by a citizen scientist 

(1) or a biologist (0) 

1Percent of shoreline with emergent vegetation was assigned one of 5 categories:  0%, 1-25%, 25-50%, 

50-75%, 75-100%. 

  



Table 2. Presence of amphibian chytrid fungus (Bd) at 18 catchments on the Medicine Bow National 
Forest. Bd swabs were collected from amphibians from 2012-2016. Red frogs indicate at least one 
sample tested positive for Bd at a catchment in a given year. Grey frogs indicate that no samples tested 
positive for Bd. Sample sizes and species sampled varied each year. 

 

Catchment 2012 2013 2014 2015 2016 
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Table 3. Presence of amphibian chytrid fungus (Bd) in 5 amphibian species from 2012-2016 across 18 
catchments on the Medicine Bow National Forest. Red frogs indicate at least one sample tested positive 
for Bd at a catchment in a given year. Grey frogs indicate that no samples tested positive for Bd. Sample 
sizes and species sampled varied each year. 
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Table 4. Amphibian species found at monitoring catchments on the Medicine Bow-Routt National 
Forests in Wyoming and Colorado from 2012-2014. Species include Boreal Chorus Frog (BCF), Northern 
Leopard Frog (NLF), Wood Frog (WF), Boreal Toad (BT), and Tiger Salamander (TS). Naïve occupancy 
estimates reflect the number of catchments where a species was detected divided by the total number 
of survey catchments (n=33) and are not corrected for imperfect species detection. 

 

Catchment Name BCF NLF WF BT TS 

WYOMING      

MB_Ryan Park YES - YES YES - 

MB1_Hanging Ponds YES - YES - - 

MB10_Cecil Ponds YES - YES YES - 

MB11_Fish Crk Park YES - YES - - 

MB12_Willow Park YES - YES - - 

MB13_Sand Lake Bench YES - - - - 

MB14_S. Fork Ponds YES - - - - 

MB16_Fletcher Peak YES - - - YES 

MB17_Battle Creek YES - - - - 

MB18_Sandstone Crk YES - - - - 

MB19_Round Mtn YES - - - - 

MB2_Crow Crk Ponds YES YES - - YES 

MB21_Hog Park YES - YES - - 

MB3_Lodgepole Crk - YES - - - 

MB4_Fall Crk YES - - YES - 

MB5_Squaw Crk YES - YES - - 

MB6_Muddy Crk - - YES - - 

MB7b_Devils Gate - - YES - - 

COLORADO      

RT1_Big Crk Lakes-North YES - YES - - 

RT10_Summit Lake-North YES - - - - 

RT11_Muddy Creek YES - - - YES 

RT15_Carter Creek YES - YES - YES 

RT16_Morrison Creek - - - YES - 

RT17_Gore Creek YES - - - - 

RT18_Beaver Creek - - - - YES 

RT19_Allen Basin YES - - - YES 

RT2_Big Crk Lakes-South - YES YES - - 

RT20_Mandall Lakes - - - - - 

RT4_Lone Pine Creek YES - - - YES 

RT5_Summit Lake-South YES - - - YES 

RT7_Grouse Mountain YES - - - - 

RT8_Bear's Ears YES YES - - YES 

RT9_First Creek YES YES - - - 

Total number of occupied catchments 26 5 12 4 9 

Naïve Occupancy 2012-2014 0.79 0.15 0.36 0.12 0.27 



  

Figure 1.  Location of Rocky Mountain Amphibian Project (RMAP) monitoring catchments (n=33) on the 

Medicine Bow and Routt National Forests in southern Wyoming and northern Colorado.  



 

 

Figure 2. Occupancy probability predicted from the top model for each species that contained a year 
term for catchment and site occupancy. For tiger salamanders, separate models were used to predict 
catchment and site occupancy by year because a model with a year term for both spatial scales did not 
converge. Any other occupancy predictors in the model were held at their mean for prediction. Points 
represent mean estimates and error bars are 95% confidence intervals. 



 

 
Figure 3. Predicted detection probability from the top model for the boreal chorus frog while holding 
the other predictor at its mean. Solid and dotted lines are the predicted mean and 95% confidence 
intervals, respectively. 
 

 

 

 

 
 
 
Figure 4. Predicted detection (A) and catchment occupancy (B) probability from the top model for the 
northern leopard frog while holding other predictors at their mean. Points (A) and the solid line (B) are 
predicted means, and error bars (A) and dotted lines (B) are predicted 95% confidence intervals. 
 



 
 
 
Figure 5. Predicted detection probability from the top model for the wood frog while holding other 
predictors at their mean. Points and error bars (A) represent predicted means and 95% confidence 
intervals, respectively. Lines (B and C) represent predicted means by year and confidence intervals are 
not shown. 
 
 
 
 

 
 
 
Figure 6. Predicted detection probability from the top model for the tiger salamander while holding 
other predictors at their mean. Points and error bars (A) represent predicted means and 95% confidence 
intervals, respectively. Lines (B) represent predicted means by year and confidence intervals are not 
shown. 
  



Appendix 1: Understanding AIC and uninformative predictors 

 

 Arnold 2010 (1175): “…AIC…is defined as -2logL(θ||y) + 2K, where logL(θ||y) is the maximized 

log-likelihood of the model parameters given the data and K is the number of estimable parameters 

(Burnham and Anderson 2002:61). For any well-supported approximating model, it is possible to add 

any single parameter and achieve a new model that is ≤2 AIC units from the well-supported model, 

because even if the additional parameter has no explanatory ability whatsoever (i.e., log-likelihood is 

unchanged), AIC will only increase by 2 due to the 1-unit increase in K.” AICc is corrected for small 

sample sizes and may apply a parameter penalty larger than 2 depending on the value of n/K. Thus, the 

same consideration applies to AICc but the model with an uninformative predictor (or parameter) may 

be slightly more than 2 AIC units away from the nested, informative model. Although Arnold 2010, and 

Burnham and Anderson 2002, refer to log-likelihood or negative log-likelihood (NLL) in the discussion of 

uninformative predictors, the deviance values in our occupancy models are identical to NLL; thus, the 

ΔAICc and deviance values can be used to identify models with uninformative predictors.  

Deviance or NLL can be considered a relative measure of model fit, with lower values indicating 

better fit. We would thus expect the addition of an informative predictor to reduce deviance relative to 

the same model excluding that predictor. In A1 Table 1, the 2nd ranked model, temp + jdate, seems fairly 

competitive since it is approximately 2 ΔAIC from the top model (models below 2 ΔAIC are commonly 

considered to be competitive, Burnham and Anderson 2002). However, jdate is an uninformative 

predictor being “carried” by an informative predictor, temp, thus making the model appear competitive. 

The difference in deviance between the top two models is very small (0.11), i.e., the addition of jdate is 

not improving model fit relative to the simpler model with only temp. Thus, the AIC weight that is 

attributed to temp + jdate should instead go towards the top model. After accounting for the 

uninformative predictor, it is obvious that there is one clear top model, temp, as shown in A1 Table 2. 

Additionally, when many nested models are compared (e.g., Appendices 2-6), AIC weight may be 

“stolen” from higher ranked models by many different uninformative models, resulting in a substantial 

cumulative reduction in model weight for the informative models. This can result in a very misleading 

model set if the uninformative predictor effect is not understood or corrected.  

A1 Table 3 is provided as an example of how AIC and deviance values change with the addition 

of an informative predictor, year. Model fit, as measured by deviance, for temp + year reduced (or 

improved) by 7.25 compared to the temp model, and by 5.02 compared to the year model. Additionally, 

temp + year was ranked above the simpler temp and year only models, indicating that it explained 

substantial additional variation in occupancy and overcame the penalty for the additional predictor. 

 

 

 



A1 Table 1. Subset of tiger salamander detection probability models, from a multi-scale occupancy 
analysis, used as an example uninformative predictor model set. For all models, occupancy parameters 
(Ψ and Θ) were constant (intercept only). K = number of parameters, AICc = Akaike’s Information 
Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. 

 

 

 

 

 

 

 

 

A1 Table 2. Subset of tiger salamander detection probability models, from a multi-scale occupancy 
analysis, used as an example uninformative predictor model set. For all models, occupancy parameters 
(Ψ and Θ) were constant (intercept only). K = number of parameters, AICc = Akaike’s Information 
Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. NA 
under w represents a model with an uninformative predictor. Models with uninformative predictors 
were excluded when calculating w. 

 

Model K AICc ΔAICc w Deviance 

temp 4 316.64 0.00 0.97 308.19 

temp + jdate 5 318.76 2.12 NA 308.08 

jdate 4 323.88 7.24 0.03 315.43 

 

 

 

A1 Table 3. Subset of tiger salamander detection probability models, from a multi-scale occupancy 
analysis, used as an example informative predictor model set. For all models, occupancy parameters (Ψ 
and Θ) were constant (intercept only). K = number of parameters, AICc = Akaike’s Information Criterion 
corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. 

 

Model K AICc ΔAICc w Deviance 

temp + year 6 313.90 0.00 0.66 300.94 

temp 4 316.64 2.74 0.17 308.19 

year 5 316.64 2.74 0.17 305.96 

 

  

Model K AICc ΔAICc w Deviance 

temp 4 316.64 0.00 0.73 308.19 

temp + jdate 5 318.76 2.12 0.25 308.08 

jdate 4 323.88 7.24 0.02 315.43 



Appendix 2: Boreal chorus frog model sets 

 

A2 Table 1. Stage 1 boreal chorus frog multi-scale occupancy model set used to find the best model for 
detection probability (p). Occupancy parameters, Ψ and Θ, were held as complex (global) models while 
different detection models competed (35 models). K = number of parameters, AICc = Akaike’s 
Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model 
weight. NA under w represents a model with an uninformative predictor. Uninformative predictors were 
assessed within seven ΔAICc and models with uninformative predictors were excluded when calculating 
w. 

 

Model K AICc ΔAICc w Deviance 

area + temp + temp2 16 1376.72 0.00 0.40 1337.66 

temp + temp2 15 1377.98 1.26 0.21 1341.83 

area + temp 15 1378.58 1.86 0.16 1342.43 

temp 14 1380.29 3.57 0.07 1346.97 

area + jdate + temp 16 1380.40 3.67 0.06 1341.33 

area + surveyor + temp 16 1381.11 4.39 NA 1342.05 

area 14 1381.76 5.04 0.03 1348.44 

jdate + temp 15 1382.61 5.89 NA 1346.46 

surveyor + temp 15 1382.73 6.01 NA 1346.58 

area + surveyor + jdate + temp 17 1383.24 6.52 NA 1341.18 

area + jdate 15 1383.36 6.64 0.01 1347.21 

area + temp + year 17 1383.71 6.99 NA 1341.66 

constant 13 1383.86 7.14 0.01 1353.31 

area + surveyor 15 1384.04 7.32 NA 1347.89 

area + jdate + temp + year 18 1385.12 8.40 0.01 1340.00 

surveyor + jdate + temp 16 1385.30 8.58 0.01 1346.23 

temp + year 16 1385.38 8.66 0.01 1346.32 

area + surveyor + temp + year 18 1385.91 9.19 0.00 1340.79 

area + surveyor + jdate 16 1386.02 9.30 0.00 1346.96 

jdate 14 1386.03 9.31 0.00 1352.72 

surveyor 14 1386.04 9.32 0.00 1352.72 

area + year 16 1386.38 9.66 0.00 1347.32 

area + jdate + year 17 1387.46 10.74 0.00 1345.41 

surveyor + temp + year 17 1387.52 10.80 0.00 1345.47 

jdate + temp + year 17 1387.54 10.82 0.00 1345.49 

area + surveyor + jdate + temp + year 19 1387.73 11.01 0.00 1339.46 

area + surveyor + year 17 1388.14 11.42 0.00 1346.08 

year 15 1388.45 11.73 0.00 1352.30 

surveyor + jdate 15 1388.50 11.78 0.00 1352.35 



area + surveyor + jdate + year 18 1389.73 13.01 0.00 1344.61 

surveyor + jdate + temp + year 18 1389.99 13.27 0.00 1344.87 

surveyor + year 16 1390.11 13.39 0.00 1351.04 

jdate + year 16 1390.37 13.65 0.00 1351.31 

surveyor + jdate + year 17 1392.41 15.69 0.00 1350.36 

veg 17 1393.65 16.93 0.00 1351.60 

 

 

A2 Table 2. Stage 2 boreal chorus frog multi-scale occupancy model set used to find the best model for 
occupancy parameters, Ψ and Θ (16 models). For all models, detection probability (p) was held as the 
top model from stage 1: p(area + temp + temp2). K = number of parameters, AICc = Akaike’s Information 
Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. NA 
under w represents a model with an uninformative predictor. Uninformative predictors were assessed 
within seven ΔAICc and models with uninformative predictors were excluded when calculating w. The 
model in bold was used to estimate occupancy by year for both spatial scales. 

 

Ψ model Θ model K AICc ΔAICc w Deviance 

constant constant 6 1356.04 0.00 0.40 1343.07 

constant year 8 1357.80 1.76 0.16 1340.11 

elev constant 7 1358.22 2.18 0.13 1342.92 

constant area 7 1358.29 2.25 0.13 1342.99 

elev year 9 1360.07 4.03 0.05 1339.93 

constant year + area 9 1360.08 4.04 NA 1339.94 

elev area 8 1360.52 4.48 0.04 1342.82 

year constant 8 1360.71 4.67 0.04 1343.02 

elev year + area 10 1362.41 6.37 NA 1339.76 

year year 10 1362.60 6.56 0.01 1339.95 

year + elev constant 9 1363.00 6.96 NA 1342.86 

year area 9 1363.07 7.03 0.01 1342.93 

year + elev year 11 1364.98 8.94 0.00 1339.76 

year year + area 11 1365.00 8.96 0.00 1339.78 

year + elev area 10 1365.41 9.37 0.00 1342.76 

year + elev year + area 12 1367.43 11.39 0.00 1339.58 

 

  



Appendix 3: Northern leopard frog model sets 

 

A3 Table 1. Stage 1 northern leopard frog multi-scale occupancy model set used to find the best model 
for detection probability (p). Occupancy parameters, Ψ and Θ, were held as complex (global) models 
while different detection models competed (11 models). K = number of parameters, AICc = Akaike’s 
Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model 
weight. NA under w represents a model with an uninformative predictor. Uninformative predictors were 
assessed within seven ΔAICc and models with uninformative predictors were excluded when calculating 
w. 

 

Model K AICc ΔAICc w Deviance 

area + temp + year 17 243.90 0.00 0.73 201.85 

area + year 16 245.85 1.95 0.27 206.78 

area + jdate + temp + year 18 246.40 2.50 NA 201.28 

area + jdate + year 17 248.79 4.89 NA 206.74 

year 15 265.30 21.40 0.00 229.15 

temp + year 16 266.67 22.77 0.00 227.60 

jdate + year 16 268.12 24.22 0.00 229.05 

jdate + temp + year 17 269.65 25.75 0.00 227.60 

constant 13 271.99 28.09 0.00 241.44 

temp 14 274.17 30.27 0.00 240.85 

temp + temp2 15 276.79 32.88 0.00 240.63 

 

 

 



A3 Table 2. Stage 2 northern leopard frog multi-scale occupancy model set used to find the best model 
for occupancy parameters, Ψ and Θ (16 models). For all models, detection probability (p) was held as 
the top model from stage 1: p(area + temp + year). K = number of parameters, AICc = Akaike’s 
Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model 
weight. NA under w represents a model with an uninformative predictor. Uninformative predictors were 
assessed within seven ΔAICc and models with uninformative predictors were excluded when calculating 
w. The model in bold was used to estimate occupancy by year for both spatial scales. 

       

Ψ model Θ model K AICc ΔAICc w Deviance 

elev constant 8 230.68 0.00 0.45 212.99 

elev year 10 231.39 0.70 0.32 208.73 

elev area 9 232.93 2.24 0.15 212.78 

elev year + area 11 233.75 3.07 NA 208.53 

year + elev constant 10 234.93 4.24 NA 212.28 

year + elev year 12 235.73 5.05 NA 207.88 

constant constant 7 236.06 5.38 0.03 220.76 

constant year 9 236.54 5.86 0.02 216.40 

year + elev area 11 237.29 6.60 NA 212.07 

constant area 8 238.19 7.51 0.01 220.50 

year + elev year + area 13 238.28 7.59 0.01 207.73 

constant year + area 10 238.82 8.14 0.01 216.17 

year constant 9 240.37 9.69 0.00 220.23 

year year 11 240.97 10.29 0.00 215.75 

year area 10 242.61 11.93 0.00 219.96 

year year + area 12 243.41 12.72 0.00 215.56 

 

  



Appendix 4: Wood frog model sets 

 

A4 Table 1. Stage 1 wood frog multi-scale occupancy model set used to find the best model for detection 
probability (p). Occupancy parameters, Ψ and Θ, were held as complex (global) models while different 
detection models competed (34 models). K = number of parameters, AICc = Akaike’s Information 
Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. NA 
under w represents a model with an uninformative predictor. Uninformative predictors were assessed 
within seven ΔAICc and models with uninformative predictors were excluded when calculating w. 

 

Model K AICc ΔAICc w Deviance 

area + surveyor + jdate + temp + year 19 578.97 0.00 0.55 530.70 

area + surveyor + jdate + year 18 581.33 2.36 0.17 536.21 

area + surveyor + jdate + temp 17 582.39 3.42 0.10 540.34 

area + jdate + temp + year 18 583.44 4.47 0.06 538.32 

area + surveyor + jdate 16 584.09 5.12 0.04 545.03 

area + jdate + year 17 584.90 5.93 0.03 542.85 

surveyor + jdate + temp + year 18 586.62 7.64 0.01 541.50 

area + temp + year 17 587.62 8.65 0.01 545.57 

surveyor + jdate + year 17 587.92 8.95 0.01 545.87 

area + year 16 588.37 9.40 0.01 549.31 

area + surveyor + temp + year 18 589.46 10.48 0.00 544.34 

area + surveyor + temp 16 589.74 10.77 0.00 550.68 

area + surveyor 15 590.21 11.23 0.00 554.05 

area + surveyor + year 17 590.28 11.30 0.00 548.22 

surveyor + jdate + temp 16 590.96 11.98 0.00 551.89 

area + temp 15 591.08 12.11 0.00 554.93 

area + jdate + temp 16 591.31 12.34 0.00 552.25 

jdate + temp + year 17 591.54 12.57 0.00 549.49 

area 14 591.69 12.72 0.00 558.38 

jdate + year 16 591.88 12.91 0.00 552.82 

surveyor + jdate 15 591.97 12.99 0.00 555.81 

area + jdate 15 592.46 13.49 0.00 556.31 

year 15 597.85 18.88 0.00 561.70 

temp + year 16 597.95 18.98 0.00 558.89 

surveyor + temp + year 17 599.89 20.91 0.00 557.83 

surveyor + year 16 599.90 20.92 0.00 560.83 

surveyor 14 600.40 21.42 0.00 567.08 

surveyor + temp 15 600.43 21.45 0.00 564.27 

jdate + temp 15 601.16 22.18 0.00 565.00 

jdate 14 601.46 22.48 0.00 568.14 



constant 13 601.89 22.92 0.00 571.34 

temp 14 601.98 23.00 0.00 568.66 

temp + temp2 15 604.81 25.84 0.00 568.66 

veg 17 611.40 32.42 0.00 569.35 

 

 

A4 Table 2. Stage 2 wood frog multi-scale occupancy model set used to find the best model for 
occupancy parameters, Ψ and Θ (16 models). For all models, detection probability (p) was held as the 
top model from stage 1: p(area + surveyor + jdate + temp + year). K = number of parameters, AICc = 
Akaike’s Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc 
model weight. NA under w represents a model with an uninformative predictor. Uninformative 
predictors were assessed within seven ΔAICc and models with uninformative predictors were excluded 
when calculating w. The model in bold was used to estimate occupancy by year for both spatial scales. 

 

Ψ model Θ model K AICc ΔAICc w Deviance 

constant constant 9 554.85 0.00 0.38 534.70 

constant area 10 555.71 0.86 0.25 533.06 

elev constant 10 557.35 2.51 0.11 534.70 

year constant 11 558.21 3.37 0.07 532.99 

elev area 11 558.28 3.43 0.07 533.06 

year area 12 559.19 4.34 0.04 531.33 

constant year 11 559.86 5.01 0.03 534.64 

constant year + area 12 560.79 5.95 0.02 532.94 

year + elev constant 12 560.84 5.99 NA 532.99 

year + elev area 13 561.88 7.03 NA 531.33 

elev year 12 562.49 7.64 0.01 534.64 

elev year + area 13 563.49 8.64 0.01 532.94 

year year 13 563.52 8.67 0.01 532.97 

year year + area 14 564.59 9.74 0.00 531.27 

year + elev year 14 566.28 11.43 0.00 532.96 

year + elev year + area 15 567.42 12.58 0.00 531.27 

 

  



Appendix 5: Boreal toad model sets 

 

A5 Table 1. Stage 1 boreal toad multi-scale occupancy model set used to find the best model for 
detection probability (p). Occupancy parameters, Ψ and Θ, were held as complex (global) models while 
different detection models competed (33 models). K = number of parameters, AICc = Akaike’s 
Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model 
weight. NA under w represents a model with an uninformative predictor. Uninformative predictors were 
assessed within seven ΔAICc and models with uninformative predictors were excluded when calculating 
w. 

 

Model K AICc ΔAICc w Deviance 

constant 11 226.99 0.00 0.27 201.78 

temp 12 227.17 0.18 0.25 199.32 

surveyor 12 229.07 2.07 0.10 201.22 

jdate 12 229.08 2.08 0.10 201.23 

surveyor + temp 13 229.41 2.41 NA 198.86 

temp + temp2 13 229.45 2.45 NA 198.90 

area 12 229.62 2.62 0.07 201.77 

area + temp 13 229.84 2.84 NA 199.29 

jdate + temp 13 229.86 2.87 NA 199.31 

temp + year 14 230.38 3.39 0.05 197.07 

jdate + year 14 230.66 3.66 0.04 197.34 

surveyor + jdate 13 231.47 4.47 NA 200.92 

year 13 231.64 4.65 0.03 201.09 

area + surveyor 13 231.73 4.74 NA 201.18 

area + jdate 13 231.77 4.78 NA 201.22 

surveyor + temp + year 15 231.92 4.92 0.02 195.76 

jdate + temp + year 15 231.98 4.98 0.02 195.83 

area + surveyor + temp 14 232.08 5.08 NA 198.76 

surveyor + jdate + temp 14 232.15 5.16 NA 198.84 

area + jdate + temp 14 232.60 5.60 NA 199.28 

surveyor + jdate + year 15 232.73 5.74 NA 196.58 

area + temp + year 15 233.18 6.19 NA 197.03 

surveyor + year 14 233.21 6.21 0.01 199.89 

area + jdate + year 15 233.31 6.31 NA 197.15 

surveyor + jdate + temp + year 16 233.91 6.92 NA 194.85 

area + surveyor + jdate 14 234.22 7.22 NA 200.90 

area + year 14 234.36 7.36 NA 201.04 

area + jdate + temp + year 16 234.61 7.62 0.01 195.55 

area + surveyor + temp + year 16 234.63 7.64 0.01 195.57 



area + surveyor + jdate + temp 15 234.89 7.89 0.01 198.73 

area + surveyor + jdate + year 16 235.35 8.35 0.00 196.28 

area + surveyor + year 15 235.88 8.88 0.00 199.72 

area + surveyor + jdate + temp + year 17 236.42 9.43 0.00 194.37 

 

 

A5 Table 2. Stage 2 boreal toad multi-scale occupancy model set used to find the best model for 
occupancy parameters, Ψ and Θ (14 models). For all models, detection probability (p) was held as the 
top model from stage 1: p(constant). K = number of parameters, AICc = Akaike’s Information Criterion 
corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. NA under w 
represents a model with an uninformative predictor. Uninformative predictors were assessed within 
seven ΔAICc and models with uninformative predictors were excluded when calculating w. The model in 
bold was used to estimate occupancy by year for both spatial scales. 

 

Ψ model Θ model K AICc ΔAICc w Deviance 

constant year 5 218.48 0.00 0.42 207.80 

elev year 6 219.10 0.62 0.31 206.14 

constant year + area 6 220.68 2.20 NA 207.71 

elev year + area 7 221.36 2.88 NA 206.06 

constant constant 3 221.84 3.36 0.08 215.57 

elev constant 4 222.35 3.87 0.06 213.90 

year + elev year 8 222.42 3.94 0.06 204.73 

constant area 4 223.95 5.47 0.03 215.50 

elev area 5 224.52 6.04 0.02 213.84 

year + elev year + area 9 224.75 6.27 NA 204.60 

year constant 5 226.14 7.66 0.01 215.46 

year + elev constant 6 226.75 8.27 0.01 213.78 

year area 6 228.36 9.88 0.00 215.39 

year + elev area 7 229.02 10.54 0.00 213.72 

 

 

  



Appendix 6: Tiger salamander model sets 

 

A6 Table 1. Stage 1 tiger salamander multi-scale occupancy model set used to find the best model for 
detection probability (p). Occupancy parameters, Ψ and Θ, were held as constant (intercept only) 
models while different detection models competed (33 models). Detection models did not converge 
when more complicated occupancy models were used. K = number of parameters, AICc = Akaike’s 
Information Criterion corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model 
weight. NA under w represents a model with an uninformative predictor. Uninformative predictors were 
assessed within seven ΔAICc and models with uninformative predictors were excluded when calculating 
w. 

 

Model K AICc ΔAICc w Deviance 

temp + year 6 313.90 0.00 0.55 300.94 

area + temp + year 7 315.66 1.76 NA 300.36 

surveyor + temp + year 7 315.97 2.07 NA 300.67 

jdate + temp + year 7 316.22 2.32 NA 300.92 

temp 4 316.64 2.74 0.14 308.19 

year 5 316.64 2.74 0.14 305.96 

area + year 6 317.04 3.14 0.11 304.07 

area + surveyor + temp + year 8 317.85 3.95 NA 300.16 

area + jdate + temp + year 8 318.05 4.15 NA 300.36 

surveyor + jdate + temp + year 8 318.34 4.44 NA 300.65 

area + temp 5 318.38 4.48 NA 307.70 

surveyor + year 6 318.57 4.67 NA 305.60 

jdate + temp 5 318.76 4.86 NA 308.08 

jdate + year 6 318.83 4.93 NA 305.86 

temp + temp2 5 318.84 4.94 NA 308.16 

surveyor + temp 5 318.86 4.96 NA 308.18 

area + surveyor + year 7 319.14 5.24 NA 303.84 

area + jdate + year 7 319.38 5.47 NA 304.07 

area + surveyor + jdate + temp + year 9 320.30 6.40 NA 300.16 

area + jdate + temp 6 320.62 6.72 NA 307.65 

area + surveyor + temp 6 320.66 6.76 NA 307.69 

surveyor + jdate + year 7 320.76 6.86 NA 305.46 

surveyor + jdate + temp 6 321.02 7.11 NA 308.05 

area + surveyor + jdate + year 8 321.53 7.63 0.01 303.83 

constant 3 321.93 8.03 0.01 315.66 

area 4 322.09 8.19 0.01 313.64 

area + surveyor + jdate + temp 7 322.95 9.05 0.01 307.65 

jdate 4 323.88 9.98 0.00 315.43 



surveyor 4 324.00 10.10 0.00 315.56 

area + surveyor 5 324.29 10.39 0.00 313.61 

area + jdate 5 324.30 10.40 0.00 313.62 

surveyor + jdate 5 325.98 12.08 0.00 315.29 

area + surveyor + jdate 6 326.55 12.65 0.00 313.58 

 

 

A6 Table 2. Stage 2 tiger salamander multi-scale occupancy model set used to find the best model for 
occupancy parameters, Ψ and Θ (12 models). For all models, detection probability (p) was held as the 
top model from stage 1: p(temp + year). K = number of parameters, AICc = Akaike’s Information Criterion 
corrected for small sample sizes, ∆AICc = AICci – minimum AICc, w = AICc model weight. NA under w 
represents a model with an uninformative predictor. Uninformative predictors were assessed within 
seven ΔAICc and models with uninformative predictors were excluded when calculating w. Models in 
bold were used to estimate catchment (Ψ) and site (Θ) occupancy by year, respectively. 

 

Ψ model Θ model K AICc ΔAICc w Deviance 

constant constant 6 313.90 0.00 0.37 300.94 

constant area 7 315.25 1.35 0.19 299.94 

elev constant 7 315.98 2.08 0.13 300.68 

year constant 8 316.32 2.42 0.11 298.63 

elev area 8 317.36 3.46 0.07 299.67 

year area 9 317.78 3.88 0.05 297.64 

constant year 8 318.00 4.10 0.05 300.31 

year + elev constant 9 318.51 4.61 NA 298.37 

constant year + area 9 319.40 5.50 NA 299.26 

year + elev area 10 320.01 6.11 NA 297.36 

elev year 9 320.21 6.31 0.02 300.07 

elev year + area 10 321.66 7.76 0.01 299.01 

 

 


